Tesler Matrices and Lusztig Data

Ivan Balashov, Constantine Bulavenko, and Yaroslav Molybog Mentor: Anne Dranowski

June 2024

Table of Contents

Definitions

- Tesler Matrices
- Kostant pictures
- Lusztig data

2 Tesler Matrices and Lusztig data posets

- Two poset structures on Kostant Pictures
- Integral flow graphs
- Integral flow = Kostant Pictures
- Comparing Posets

3 Asymptotics

- Height diagrams
- Previous results
- Results

(D) (A) (A) (A) (A)

Tesler Matrices

Definition

For a $n \times n$ upper-triangular matrix A with non-negative integer entries, we define its k^{th} hook sum $h_k, 1 \leq k \leq n$ as

$$h_k = \sum_{i=k}^n a_{ki} - \sum_{i=1}^{k-1} a_{ik}$$

and its *hook sum vector* as $\mathbf{h} = (h_1, h_2, ..., h_n)$.

$ \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ & 1 & 0 & 0 & 0 \\ & 0 & 1 & 1 \\ & & 0 & 2 \\ & & & & 4 \end{pmatrix} $	0 1 1	0 1 1	0 1 1	$\begin{array}{ccc} 0 & 1 & 1 \\ & 0 & 2 \end{array}$
$h_1 = 1$	$h_2 = 1$	$h_3 = 1$	$h_4 = 1$	$h_{5} = 1$

Figure: Hook sums of a Tesler matrix

Definition

The set of all upper triangular matrices with hook sum **h** is denoted $T(\mathbf{h})$. Its elements are called *Tesler matrices*.

Example

For example, the matrix we used before is also Tesler matrix from the set T(1, 1, 1, 1, 1).

$$egin{array}{ccccccc} 0 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ & 0 & 1 & 1 \ & & 0 & 2 \ & & & 4 \end{array}$$

Balashov, Bulavenko, Molybog	Tesler Matrices and Lusztig Data	June 2024 4	4 / :
------------------------------	----------------------------------	-------------	-------

イロト イヨト イヨト イヨト ニヨー

26

Kostant pictures

Kostant pictures

Definition

In \mathbb{R}^{n+1} with its standard basis $\{\mathbf{e}_i\}_{1 \le i \le n}$ we define the **positive roots** $\alpha_{ij} = \mathbf{e}_i - \mathbf{e}_{j+1}$ for $1 \le i \le j \le n$. In particular, the **simple roots** are $\alpha_i \equiv \alpha_{ii} = \mathbf{e}_i - \mathbf{e}_{i+1}$ for $1 \le i \le n$.

Example

In \mathbb{R}^5 we have $\alpha_{24} = (0, 1, 0, 0, -1)$ and

$$\alpha_{24} = \alpha_2 + \alpha_3 + \alpha_4 = (0, 1, -1, 0, 0) + (0, 0, 1, -1, 0) + (0, 0, 0, 1, -1)$$

Balashov, Bulavenko, Molybog Tesler Matrices and Lusztig Data June 2024

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ○○○

5/26

Definition

We define **positive root cone** of $\mathbb{Z}_{>0}$ -linear combinations of simple roots as Q_+ .

Example

For
$$\mathbb{R}^2$$
: $Q_+ = \{a_{11} \cdot \alpha_1 : a_{ij} \in \mathbb{Z}_{\geq 0}\}.$
For \mathbb{R}^3 : $Q_+ = \{a_{11} \cdot \alpha_1 + a_{12} \cdot \alpha_{12} + a_{22} \cdot \alpha_2 : a_{ij} \in \mathbb{Z}_{\geq 0}\}.$

< □ > < □ > < □ > < □ > < □ > = Ξ

Definition

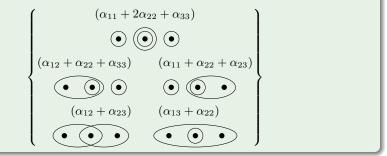
A **Kostant picture** of weight $v \in Q_+$ is a diagram representing a decomposition of the weight v as a non-negative integer sum of positive roots. We draw n black dots evenly spaced in a line, one for every simple root. The root α_{ij} is represented by uniting dots number i and j with a loop that contains all dots from i to j inclusively.

Example

Let v = (1, 1, -1, -1). Let us emphasize the correspondence between loops and roots. The Kostant picture of the decompositions $\alpha_1 + 2\alpha_2 + \alpha_3$ and $\alpha_{12} + \alpha_2 + \alpha_3$ are provided below.

Example

Or here is an example for all possible combinations.



Balashov, Bulavenko, Molybog	Tesler Matrices and Lusztig Data	June 2024 8 / 2	26
------------------------------	----------------------------------	-----------------	----

Definition

Given $v \in Q_+$ define its *Kostant partition function* KPF(v) as the number of ways of expressing v as a sum of positive roots.

Example

For example if v = (1, 1, -1, -1) then KPF(v) = 5, since

 $v = \alpha_{11} + 2\alpha_{22} + \alpha_{33} = \alpha_{12} + \alpha_{23} = \alpha_{12} + \alpha_{22} + \alpha_{33} = \alpha_{13} + \alpha_{22} = \alpha_{11} + \alpha_{22} + \alpha_{23}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Lusztig data

Definition

A *Lusztig data* is a tuple of $\ell = \binom{n}{2}$ non-negative integers

$$\mathbf{a} = (a_{11}, a_{12}, \dots, a_{1n}, a_{22}, a_{23}, \dots, a_{nn}),$$

having weight

$$\operatorname{wt}(\mathbf{a}) = \sum a_{ij} \alpha_{ij} \in Q_+.$$

Given $v \in Q_+$ we denote the set of all Lusztig data having weight v by A(v).

Lustig data	v decomposition	Lustig data	v decomposition
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \alpha_{11} + 2\alpha_{22} + \alpha_{33} \\ \alpha_{12} + \alpha_{22} + \alpha_{33} \\ \alpha_{11} + \alpha_{22} + \alpha_{23} \end{array}$	(0, 1, 0, 0, 1, 0) (0, 0, 1, 1, 0, 0)	$\begin{array}{c} \alpha_{12} + \alpha_{23} \\ \alpha_{13} + \alpha_{22} \end{array}$

Table: Lusztig data of weight v = (1, 1, -1, -1)

Tesler Poset

Definition (Poset on Tesler matrices, O'Neill)

For a fixed hook sum vector \mathbf{h} , let $A \in \mathcal{T}(\mathbf{h})$ cover $B \in \mathcal{T}(\mathbf{h})$ $(A \succeq B)$ iff they have the same entries except $a_{ij} = b_{ij} + 1$, $a_{jk} = b_{jk} + 1$, $a_{ik} = b_{ik} - 1$ for a unique triple i < j < k or $a_{ij} = b_{ij} + 1$, $a_{jj} = b_{jj} + 1$, $a_{ii} = b_{ii} - 1$ for a unique pair i < j.

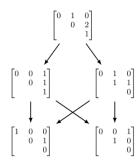


Figure: Poset on $\mathcal{T}(1, 1, -1, -1)$

臣

Tesler Poset

Definition (Poset on Tesler matrices, O'Neill)

For a fixed hook sum vector \mathbf{h} , let $A \in \mathcal{T}(\mathbf{h})$ cover $B \in \mathcal{T}(\mathbf{h})$ $(A \succeq B)$ iff they have the same entries except $a_{ij} = b_{ij} + 1$, $a_{jk} = b_{jk} + 1$, $a_{ik} = b_{ik} - 1$ for a unique triple i < j < k or $a_{ij} = b_{ij} + 1$, $a_{jj} = b_{jj} + 1$, $a_{ii} = b_{ii} - 1$ for a unique pair i < j.

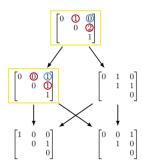


Figure: Poset on $\mathcal{T}(1, 1, -1, -1)$

Tesler Poset

Definition (Poset on Tesler matrices, O'Neill)

For a fixed hook sum vector \mathbf{h} , let $A \in \mathcal{T}(\mathbf{h})$ cover $B \in \mathcal{T}(\mathbf{h})$ $(A \succeq B)$ iff they have the same entries except $a_{ij} = b_{ij} + 1$, $a_{jk} = b_{jk} + 1$, $a_{ik} = b_{ik} - 1$ for a unique triple i < j < k or $a_{ij} = b_{ij} + 1$, $a_{jj} = b_{jj} + 1$, $a_{ii} = b_{ii} - 1$ for a unique pair i < j.

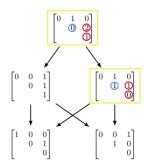


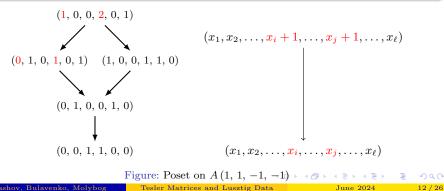
Figure: Poset on $\mathcal{T}(1, 1, -1, -1)$

Lusztig data poset

Definition (Poset via Lusztig data)

The *double-sided dictionary* partial order on A(v) is defined by $\mathbf{a} \leq \mathbf{a}'$ if there can be found two integers l < r such that

- $a'_{l} > a_{l}$.
- $a'_r > a_r$.
- $a'_i = a_i$ for all i < l and i > r.



Definition (Poset on Kostant pictures)

We define the additive partial order on the set of all Kostant pictures by the following covering relation: $\alpha_{ij} < \alpha_{ik} + \alpha_{k+1j}$, $i \leq k < j$.

Example

For Kostant pictures $\mathcal{K}(1, 1, -1, -1)$ we can draw the corresponding Hasse diagram.

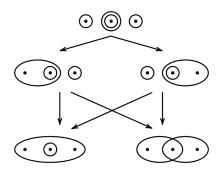


Figure: $\mathcal{K}(1, 1, -1, -1)$

Definition (Poset on Kostant pictures)

We define the additive partial order on the set of all Kostant pictures by the following covering relation: $\alpha_{ij} < \alpha_{ik} + \alpha_{k+1j}$, $i \leq k < j$.

Example

For Kostant pictures $\mathcal{K}(1, 1, -1, -1)$ we can draw the corresponding Hasse diagram.

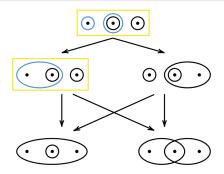


Figure: $\mathcal{K}(1, 1, -1, -1)$

Integral flow

Definition

The *integral flow graph* with net flow \mathbf{h} on n + 1 vertices consist of non-negative flows on the edges and an example of how it looks is shown below. The set of all such graphs is denoted $\mathcal{I}(\mathbf{h})$.

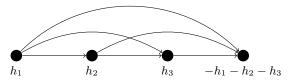


Figure: Example of an integral flow graph

イロト イヨト イヨト イヨト

Theorem (Mészáros, Morales, Rhoades)

The sets $\mathcal{T}(\mathbf{h})$ and $\mathcal{I}(\mathbf{h})$ are equivalent.

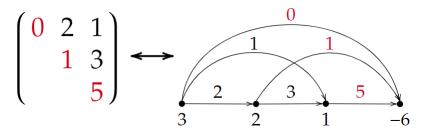


Figure: One element of $\mathcal{T}(3, 2, 1, -6)$ and its integral flow $\mathcal{I}(3, 2, 1, -6)$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

- How will the Tesler partial order appear in an integral flow?

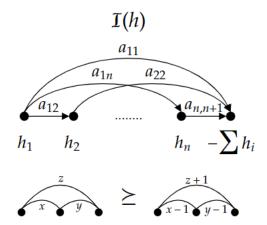
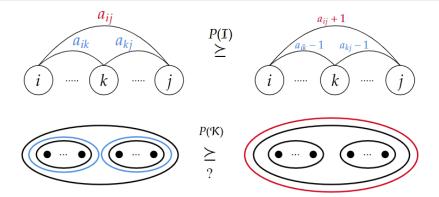


Figure: The corresponding integral flow poset

Theorem (Balashov, Bulavenko, Molybog)

The partial order on $\mathcal{I}(\mathbf{h})$ is isomorphic to the merging order on $\mathcal{K}(\mathbf{h})$.



Balashov, Bulavenko, Molybog	Tesler Matrices and Lusztig Data	June 2024	17 / 26

4 D N 4 D N 4 D N 4

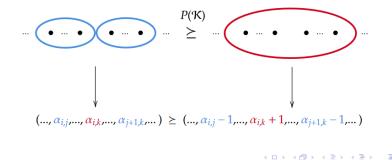
18 N

Conjecture (Williams)

The two partial orders on the Kostant pictures (one from definition and the other from Lusztig data) are equivalent.

Theorem (Balashov, Bulavenko, Molybog)

Actually, the poset from $\mathcal{K}(\mathbf{h})$ is a **weak subposet** (the cardinalities are equal, however, the edges are preserved only in one direction) of the poset coming from Lusztig data.



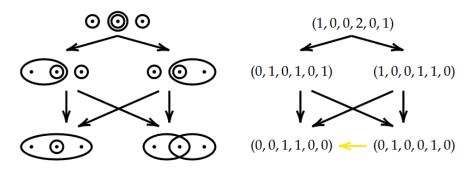


Figure: Counterexample for $\mathbf{h} = (1, 1, -1, -1)$

(日) (四) (三) (三) (三)

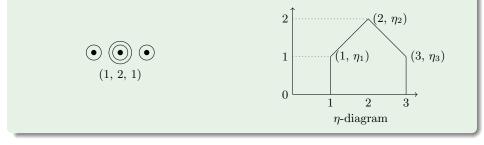
Height diagrams

Definition

For a Kostant picture with weight $v = (v_1, v_2, ..., v_{n+1})$, we define its **height** as $\eta = (v_1, v_1 + v_2, \sum_{i=1}^n v_i)$. Equivalently, η is defined by $v = \sum_{i=1}^n \eta_i \alpha_i$.

Example

The height corresponding to $v = (1, 1, -1, -1) = 1\alpha_1 + 2\alpha_2 + 1\alpha_3$ is $\eta = (1, 2, 1)$.



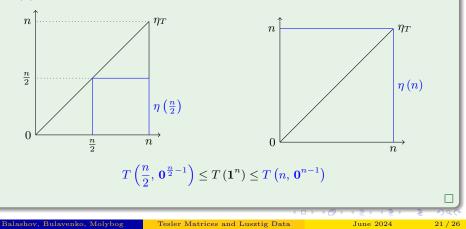
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

Proposition

$$T(\mathbf{1}^{n}) \cong T(n, \mathbf{0}^{n-1}), \text{ where } f(x) \cong g(x) \text{ denotes } \lim_{x \to \infty} \frac{\ln \circ f}{\ln \circ g}(x) \in \mathbb{R}^{+}$$

Proof.

Note that $\mathbf{h} = \mathbf{1}^n$ corresponds to $\eta_T = (1, 2, ..., n)$, while $\mathbf{h} = (n, \mathbf{0}^{n-1})$ corresponds to $\eta(n) = \mathbf{n}^n$.



Background

Example

For a simple hook sum vector case: $T(1, \mathbf{0}^{n-1}) = 2^{n-1}$.

Result (Zeilberger)

$$T(1, 2, ..., n) = \prod_{i=1}^{n} C_i \simeq e^{n^2},$$

where $C_i = \frac{1}{i+1} {2i \choose i}$ denotes the *i*th Catalan number.

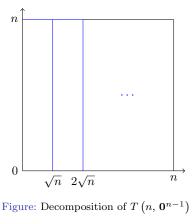
Conjecture (O'Neill)

Let $\alpha = (1, 1, ..., 1)$ and $P(\alpha)$ be the Tesler poset with Möbius function $\mu(\cdot)$. Then

$$\left|\mu\left(\hat{0},\,A\right)\right|\leq n!.$$

If the conjecture holds, $T(\mathbf{1}^n) \cong e^{n^2}$.

Using height diagrams, it is easy to show $T(n^2, \mathbf{0}^{n-1}) \cong T(1, 2, ..., n) \cong e^{n^2}$, meaning $T(n, \mathbf{0}^{\sqrt{n}-1}) \cong e^n$.



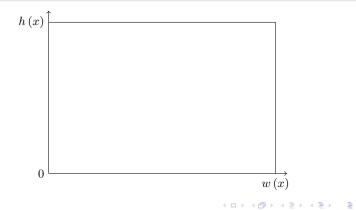
$$e^{n\sqrt{n}} \lessapprox T(n, \mathbf{0}^{n-1}) \lessapprox n^{n\sqrt{n}}$$

Theorem (Balashov, Bulavenko, Molybog)

 $T(\mathbf{1}^n) \cong T(n, \mathbf{0}^{n-1}) \cong e^{n\sqrt{n}}$, disproving O'Neill's conjecture.

Corollary

$$T\left(h\left(x\right),\,\mathbf{0}^{w\left(x\right)-1}\right) \cong e^{w\left(x\right)\sqrt{h\left(x\right)}}, \text{ where } \lim_{x \to \infty} h\left(x\right) = \infty \text{ and } \lim_{x \to \infty} \frac{h\left(x\right)}{w\left(x\right)^{2}} \in \mathbb{R}.$$



Bibliography

- O'Neill, Jason (2018) On the poset and asymptotics of Tesler matrices, Electronic Journal of Combinatorics.
 - Doron Zeilberger (1998) Proof of a Conjecture of Chan, Robbins, and Yuen.
- Tingley, Peter (2017) *Elementary construction of Lusztig's canonical basis*, Amer. Math. Soc., Providence, RI.
- Mészáros, Karola and Morales, Alejandro H. and Rhoades, Brendon (2016) *The polytope of Tesler matrices*, Springer Science and Business Media LLC.
- D. Armstrong, A. Garsia, J. Haglund, B. Sagan, and B. Rhoades. Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics.
- Stanley EC1 Chapter 3: Posets
- SageMath, the Sage Mathematics Software System (Version x.y.z)

Thank you for your attention!

Balashov, Bulavenko, Molybog

Tesler Matrices and Lusztig Data

Jun

▲口> ▲圖> ▲注> ▲注> 三注

26 / 26